Psicólogo egresado de la UNAM, interesado en modelos matemáticos del comportamiento y sus aplicaciones; principalmente en los campos de psicometría, economía conductual y neurociencias cognoscitivas.
R Markdown Este es un documento escrito con RMarkdown. Par más detalles ver http://rmarkdown.rstudio.com.
Puedes incluir un chunk con código de R como en este ejemplo:
summary(cars) ## speed dist ## Min. : 4.0 Min. : 2.00 ## 1st Qu.:12.0 1st Qu.: 26.00 ## Median :15.0 Median : 36.00 ## Mean :15.4 Mean : 42.98 ## 3rd Qu.:19.0 3rd Qu.: 56.00 ## Max. :25.0 Max. :120.00 fit <- lm(dist ~ speed, data = cars) fit ## ## Call: ## lm(formula = dist ~ speed, data = cars) ## ## Coefficients: ## (Intercept) speed ## -17.
Chapter 2 - Small Worlds and Large Worlds Chapter 3 - Sampling the Imaginary Chapter 4 - Linear Models Chapter 5 - Multivariate Linear Models Chapter 6 - Overfitting and Model Comparison Chapter 7 - Interactions Chapter 8 - Markov chain Monte Carlo Estimation Chapter 9 - Big Entropy and the Generalized Linear Model Chapter 10 - Counting and Classification Chapter 11 - Monsters and Mixtures Chapter 12 - Multilevel Models Chapter 13 - Adventures in Covariance Chapter 14 - Missing Data and Other Opportunities Chapter 15 - Horoscopes Chapter 2 - Small Worlds and Large Worlds Easy 2E1 Which of the expressions below correspond to the statement: the probability of rain on Monday?